Усилитель класса D - Class-D amplifier

Блок-схема базового импульсного или ШИМ-усилителя (класс D).
Примечание. Для наглядности периоды сигналов не показаны в масштабе.

Класса D усилитель или переключение усилитель представляет собой электронный усилитель , в котором усилительные устройства (транзисторы, как правило , МОП ) работают как электронные коммутаторы, а не в качестве линейных устройств усиления , как и в других усилителях. Они работают путем быстрого переключения между шинами питания, питаясь от модулятора с использованием ширины импульса, плотности импульса или связанных методов для кодирования входного аудиосигнала в последовательность импульсов. Звук уходит через простой фильтр нижних частот в громкоговоритель. Высокочастотные импульсы блокируются. Поскольку пары выходных транзисторов никогда не проводят ток одновременно, нет другого пути для протекания тока, кроме фильтра нижних частот / громкоговорителя. По этой причине КПД может превышать 90%.

История

Первый усилитель класса D был изобретен британским ученым Алеком Ривзом в 1950-х годах и впервые был назван этим именем в 1955 году. Первым коммерческим продуктом был комплектный модуль под названием X-10, выпущенный Sinclair Radionics в 1964 году. выходная мощность всего 2,5 Вт . Синклер Х-20 в 1966 г. произвело 20 ватт, но страдали от несоответствий и ограничений германия основанного BJT (биполярный транзистор) транзисторов , доступных в то время. В результате эти ранние усилители класса D оказались непрактичными и неудачными. Практические усилители класса D позже стали возможными благодаря разработке технологии MOSFET на основе кремния ( полевой транзистор металл-оксид-полупроводник). В 1978 году Sony представила TA-N88, первое устройство класса D, в котором использовались силовые полевые МОП-транзисторы и импульсный источник питания . Впоследствии в период с 1979 по 1985 год последовало быстрое развитие технологии VDMOS ( вертикальный DMOS ). Доступность недорогих полевых МОП-транзисторов с быстрой коммутацией привела к тому, что усилители класса D стали успешными в середине 1980-х годов. Первая интегральная схема на базе усилителя класса D была выпущена компанией Tripath в 1996 году и получила широкое распространение.

Основная операция

Усилители класса D работают, генерируя последовательность прямоугольных импульсов фиксированной амплитуды, но с различной шириной и разделением, или с переменным числом в единицу времени, представляя изменения амплитуды входного аналогового аудиосигнала. Часы модулятора могут синхронизироваться с входящим цифровым аудиосигналом, что устраняет необходимость преобразования сигнала в аналоговый. Затем выход модулятора используется для попеременного включения и выключения выходных транзисторов. Особое внимание уделяется тому, чтобы пара транзисторов никогда не могла проводить вместе, так как это может вызвать короткое замыкание между шинами питания транзисторов. Поскольку транзисторы либо полностью «включены», либо полностью «выключены», они проводят очень мало времени в линейной области и рассеивают очень мало энергии. Это основная причина их высокой эффективности. Простой фильтр нижних частот, состоящий из катушки индуктивности и конденсатора, обеспечивает путь для низких частот звукового сигнала, оставляя позади высокочастотные импульсы. В приложениях, чувствительных к стоимости, выходной фильтр иногда не используется. В этом случае схема полагается на индуктивность громкоговорителя, чтобы ВЧ-компонент не нагревал звуковую катушку.

Структура силового каскада класса D в некоторой степени сравнима со структурой синхронно выпрямленного понижающего преобразователя (тип неизолированного импульсного источника питания (SMPS) ), но работает в обратном направлении. В то время как понижающие преобразователи обычно функционируют как регуляторы напряжения , обеспечивая постоянное напряжение постоянного тока переменной нагрузке, и могут подавать только ток (одноквадрантный режим работы), усилитель класса D подает постоянно изменяющееся напряжение на фиксированную нагрузку, где ток и напряжение может самостоятельно менять знак (четырехквадрантная операция). Коммутационный усилитель не следует путать с линейными усилителями, которые используют SMPS в качестве источника постоянного тока. Коммутационный усилитель может использовать любой тип источника питания (например, автомобильный аккумулятор или внутренний SMPS), но определяющей характеристикой является то, что сам процесс усиления работает путем переключения. В отличие от SMPS, усилитель выполняет гораздо более важную работу - не допускать попадания нежелательных артефактов на выход. Обратная связь почти всегда используется по тем же причинам, что и в традиционных аналоговых усилителях, для уменьшения шума и искажений.

Теоретическая энергоэффективность усилителей класса D составляет 100%. Другими словами, вся мощность, подаваемая на него, передается нагрузке, ни одна из них не превращается в тепло. Это связано с тем, что идеальный переключатель в состоянии «включено» будет проводить весь ток, но не будет иметь потерь напряжения на нем, следовательно, тепло не будет рассеиваться. И когда он выключен, на нем будет полное напряжение питания, но через него не будет протекать ток утечки, и снова не будет рассеиваться тепла. Реальные силовые полевые МОП-транзисторы не являются идеальными переключателями, но их практический КПД превышает 90%. Напротив, линейные усилители класса AB всегда работают как с протекающим током, так и с напряжением на силовых устройствах. Идеальный усилитель класса B имеет теоретический максимальный КПД 78%. Усилители класса A (чисто линейные, устройства всегда включены) имеют теоретический максимальный КПД 50%, а некоторые версии имеют КПД ниже 20%.

Терминология

Термин «класс D» иногда неправильно понимают как означающий « цифровой » усилитель. Хотя некоторые усилители класса D действительно могут управляться цифровыми схемами или включать устройства цифровой обработки сигналов, силовой каскад имеет дело с напряжением и током как функцией неквантованного времени. Малейший шум, погрешность синхронизации, пульсации напряжения или любая другая неидеальность немедленно приводят к необратимому изменению выходного сигнала. Те же ошибки в цифровой системе приведут к неверным результатам только тогда, когда они станут настолько большими, что сигнал, представляющий цифру, будет искажен до неузнаваемости. До этого момента неидеальности не влияли на передаваемый сигнал. Как правило, цифровые сигналы квантуются как по амплитуде, так и по длине волны, тогда как аналоговые сигналы квантуются в одной (например, ШИМ) или (обычно) ни в одной величине.

Модуляция сигнала

Двухуровневая форма волны получается с использованием широтно-импульсной модуляции (ШИМ), модуляции плотности импульсов (иногда называемой частотно-импульсной модуляцией), управления скользящим режимом (в торговле более часто называемой «автоколебательной модуляцией») или дискретной - временные формы модуляции, такие как дельта-сигма модуляция .

Самый простой способ создания сигнала ШИМ - использовать высокоскоростной компараторC » на блок-схеме выше), который сравнивает высокочастотную треугольную волну с аудиовходом. Это генерирует серию импульсов, рабочий цикл которых прямо пропорционален мгновенному значению аудиосигнала. Затем компаратор управляет драйвером затвора МОП, который, в свою очередь, управляет парой мощных переключателей (обычно полевых МОП-транзисторов ). Это дает усиленную копию ШИМ-сигнала компаратора. Выходной фильтр удаляет высокочастотные переключающие компоненты сигнала ШИМ и восстанавливает аудиоинформацию, которую может использовать динамик.

Усилители на основе DSP, которые генерируют сигнал ШИМ непосредственно из цифрового аудиосигнала (например, SPDIF ), либо используют счетчик для измерения длительности импульса, либо реализуют цифровой эквивалент модулятора на основе треугольника. В любом случае временное разрешение, обеспечиваемое практическими тактовыми частотами, составляет всего несколько сотых периода переключения, что недостаточно для обеспечения низкого уровня шума. Фактически, длина импульса квантуется , что приводит к искажению квантования . В обоих случаях отрицательная обратная связь применяется внутри цифровой области, образуя формирователь шума, который имеет более низкий уровень шума в слышимом диапазоне частот.

Проблемы дизайна

Скорость переключения

Две важные проблемы при проектировании схем драйверов MOSFET в усилителях класса D заключаются в том, чтобы максимально сократить время простоя и работу в линейном режиме. «Мертвое время» - это период во время переключения, когда оба выходных полевых МОП-транзистора переведены в режим отсечки и оба «выключены». Мертвые времена должны быть как можно более короткими, чтобы поддерживать точный выходной сигнал с низким уровнем искажений, но слишком короткие мертвые времена приводят к тому, что MOSFET, который включается, начинает проводить ток до того, как MOSFET, который выключается, перестанет проводить. Полевые МОП-транзисторы эффективно замыкают выходной источник питания через себя в состоянии, известном как «сквозной проход». Между тем, драйверы MOSFET также должны как можно быстрее переводить полевые МОП-транзисторы между состояниями переключения, чтобы минимизировать количество времени, в течение которого полевой МОП-транзистор находится в линейном режиме - состоянии между режимом отсечки и режимом насыщения, когда полевой МОП-транзистор не включен ни полностью, ни полностью. выключен и проводит ток со значительным сопротивлением, создавая значительное тепло. Отказы драйверов, которые допускают прострел и / или слишком большую работу в линейном режиме, приводят к чрезмерным потерям, а иногда и к катастрофическому отказу полевых МОП-транзисторов. Также есть проблемы с использованием ШИМ для модулятора; по мере того, как уровень звука приближается к 100%, ширина импульса может стать настолько узкой, что это будет препятствовать способности схемы драйвера и полевого МОП-транзистора реагировать. Эти импульсы могут сокращаться до нескольких наносекунд и могут привести к вышеуказанным нежелательным условиям сквозного и / или линейного режима. Вот почему другие методы модуляции, такие как модуляция плотности импульсов, могут приблизиться к теоретической 100% эффективности, чем ШИМ.

Электромагнитная интерференция

Переключаемый силовой каскад генерирует как высокие значения dV / dt, так и dI / dt, которые вызывают излучаемое излучение всякий раз, когда какая-либо часть схемы достаточно велика, чтобы действовать как антенна . На практике это означает, что соединительные провода и кабели будут наиболее эффективными излучателями, поэтому больше всего усилий следует направить на предотвращение попадания высокочастотных сигналов на следующие:

  • Избегайте емкостной связи при коммутации сигналов в проводке.
  • Избегайте индуктивной связи различных токовых контуров силового каскада с проводкой.
  • Используйте одну сплошную заземляющую пластину и сгруппируйте все разъемы вместе, чтобы иметь общий опорный радиочастотный сигнал для развязывающих конденсаторов.
  • Перед выбором компонентов включите эквивалентную последовательную индуктивность конденсаторов фильтра и паразитную емкость катушек индуктивности фильтра в модель схемы.
  • Везде, где встречается звон , найдите индуктивную и емкостную части резонансного контура, который его вызывает, и используйте демпферы с параллельным RC или последовательным RL для уменьшения добротности резонанса.
  • Не заставляйте полевые МОП-транзисторы переключаться быстрее, чем это необходимо для выполнения требований к эффективности или искажениям. Искажения легче уменьшить, используя отрицательную обратную связь, чем ускоряя переключение.

Конструкция блока питания

Усилители класса D предъявляют дополнительные требования к источнику питания, а именно, чтобы он мог поглощать энергию, возвращаемую от нагрузки. Реактивные (емкостные или индуктивные) нагрузки накапливают энергию в течение части цикла и возвращают часть этой энергии позже. Линейные усилители рассеивают эту энергию, усилители класса D возвращают ее в источник питания, который должен каким-то образом сохранять ее. Кроме того, полумостовые усилители класса D передают энергию от одной шины питания (например, положительной шины) к другой (например, отрицательной) в зависимости от знака выходного тока. Это происходит независимо от того, резистивная нагрузка или нет. Источник должен либо иметь достаточно емкостного накопителя на обоих рельсах, либо иметь возможность передавать эту энергию обратно.

Выбор активного устройства

Активные устройства в усилителе класса D должны действовать только как управляемые переключатели и не должны иметь особо линейного отклика на управляющий вход. Обычно используются биполярные транзисторы или полевые транзисторы. Вакуумные лампы могут использоваться в качестве устройств переключения мощности в усилителях звука класса D.

Контроль ошибок

Фактический выход усилителя зависит не только от содержания модулированного сигнала ШИМ. Напряжение источника питания напрямую амплитудно модулирует выходное напряжение, ошибки мертвого времени делают выходной импеданс нелинейным, а выходной фильтр имеет сильно зависящую от нагрузки частотную характеристику. Эффективный способ борьбы с ошибками, независимо от их источника, - отрицательная обратная связь . Контур обратной связи, включающий выходной каскад, можно создать с помощью простого интегратора. Чтобы включить выходной фильтр, используется ПИД-регулятор , иногда с дополнительными интегрирующими элементами. Необходимость подавать фактический выходной сигнал обратно в модулятор делает непривлекательным прямую генерацию ШИМ из источника SPDIF . Устранение тех же проблем в усилителе без обратной связи требует решения каждой из них отдельно у источника. Модуляция источника питания может быть частично отменена путем измерения напряжения питания для регулировки усиления сигнала перед вычислением ШИМ, а искажения могут быть уменьшены за счет более быстрого переключения. Выходным импедансом нельзя управлять иначе, как через обратную связь.

Преимущества

Основное преимущество усилителя класса D состоит в том, что он может быть более эффективным, чем линейный усилитель, с меньшей мощностью, рассеиваемой в виде тепла в активных устройствах. Учитывая, что не требуются большие радиаторы , усилители класса D намного легче, чем усилители классов A, B или AB, что является важным соображением при использовании портативного оборудования для систем звукоусиления и усилителей низких частот . Выходные каскады, такие как те, что используются в генераторах импульсов, являются примерами усилителей класса D. Однако этот термин в основном применяется к усилителям мощности, предназначенным для воспроизведения аудиосигналов с полосой пропускания значительно ниже частоты переключения.

Boss Audio моноусилитель. Выходной каскад находится вверху слева, выходные дроссели - это два желтых тороида внизу.

Использует

  • Домашний кинотеатр в коробочных системах. Эти экономичные системы домашнего кинотеатра почти всегда оснащены усилителями класса D. Из-за скромных требований к производительности и простой конструкции наиболее распространено прямое преобразование цифрового звука в ШИМ без обратной связи.
  • Мобильные телефоны . Мощность внутреннего громкоговорителя составляет до 1 Вт. Класс D используется для продления срока службы батареи.
  • Слуховые аппараты . Миниатюрный громкоговоритель (известный как приемник) напрямую приводится в действие усилителем класса D для максимального увеличения срока службы батареи и может обеспечивать уровни насыщения 130 дБ SPL или более.
  • Активные динамики
  • Высококачественный звук обычно консервативен в отношении внедрения новых технологий, но усилители класса D появились.
  • Активные сабвуферы
  • Системы звукоусиления . Для усиления очень большой мощности потери мощности усилителей AB недопустимы. Усилители с выходной мощностью в несколько киловатт доступны как класс D. Доступны усилители мощности класса D, которые рассчитаны на 1500 Вт на канал, но при этом весят всего 21 кг (46 фунтов).
  • Усиление басовых инструментов
  • Радиочастотные усилители могут использовать класс D или другие классы коммутируемого режима для обеспечения высокоэффективного усиления РЧ мощности в системах связи.

Смотрите также

Рекомендации

Внешние ссылки