Элементарная частица - Elementary particle

В физике элементарных частиц , элементарные частицы или фундаментальная частица является элементарной частицей , которая не состоит из других частиц. Частицы, которые в настоящее время считаются элементарными, включают фундаментальные фермионы ( кварки , лептоны , антикварки и антилептоны ), которые обычно являются « частицами материи » и « частицами антивещества », а также фундаментальные бозоны ( калибровочные бозоны и бозон Хиггса ), которые обычно являются « силовыми частицами », которые опосредуют взаимодействия между фермионами. Частица, содержащая две или более элементарных частиц, является составной частицей .

Обычная материя состоит из атомов , которые когда-то считались элементарными частицами (« атомос » по-гречески означает «невозможно разрезать»), хотя существование атома оставалось спорным примерно до 1905 года, поскольку некоторые ведущие физики считали молекулы математическими иллюзиями, а материю - как окончательно составленной. от энергии . Субатомные составляющие атома были впервые идентифицированы в начале 1930-х годов; электроны и протоны , наряду с фотоном , частицей электромагнитного излучения . В то время недавнее появление квантовой механики радикально изменило представление о частицах, поскольку отдельная частица могла, казалось бы, охватывать поле, как волна , - парадокс, все еще не находящий удовлетворительного объяснения.

С помощью квантовой теории было обнаружено , что протоны и нейтроны содержат кварки - верхние и нижние кварки, которые теперь считаются элементарными частицами. И в пределах молекулы , электрон это три степени свободы ( заряд , спина , орбитальной ) можно отделить с помощью волновой функции на три квазичастицы ( холон , спинон и орбитон ). Тем не менее, свободный электрон, который не вращается вокруг ядра атома и, следовательно, лишен орбитального движения, кажется нерасщепляемым и остается элементарной частицей.

Примерно в 1980 году статус элементарной частицы как действительно элементарной - конечной составляющей вещества - по большей части был отброшен в пользу более практического подхода, воплощенного в Стандартной модели физики элементарных частиц , которая известна как наиболее успешная в экспериментальном отношении теория. Многие разработки и теории, выходящие за рамки Стандартной модели , включая популярную суперсимметрию , удваивают количество элементарных частиц, предполагая, что каждая известная частица ассоциируется с «теневым» партнером, гораздо более массивным, хотя все такие суперпартнеры остаются неоткрытыми. Между тем, элементарный бозон, опосредующий гравитацию, - гравитон - остается гипотетическим. Кроме того, согласно некоторым гипотезам, пространство-время квантовано, поэтому в рамках этих гипотез, вероятно, существуют сами «атомы» пространства и времени.

Обзор

Все элементарные частицы либо бозоны, либо фермионы . Эти классы отличаются своей квантовой статистикой : фермионы подчиняются статистике Ферми – Дирака, а бозоны - статистике Бозе – Эйнштейна . Их спин дифференцируется с помощью теоремы спиновой статистики : он является полуцелым для фермионов и целым для бозонов.

Элементарные частицы
Элементарные фермионыПолуцелое вращениеСоблюдайте статистику Ферми – Дирака Элементарные бозоныЦелочисленный спинСоблюдайте статистику Бозе – Эйнштейна
Кварки и антикваркиВращение = 1/2Есть цветной зарядУчаствуйте в сильных взаимодействиях Лептоны и антилептоныВращение = 1/2Нет заряда цветаЭлектрослабые взаимодействия Калибровочные бозоныВращение = 1, 2  [‡]Носители силы Скалярные бозоныВращение = 0
Уникальный

бозон Хиггса (
ЧАС0
)

Примечания :
[†] Антиэлектронный (
е+
) условно называют позитроном .
[‡]Все известные бозоны-носители силы имеют спин = 1 и, следовательно, являются векторными бозонами. Гипотетический гравитон имеет спин = 2 и является тензорным бозоном; неизвестно, является ли это также калибровочным бозоном.

В Стандартной модели элементарные частицы представлены для прогнозирования как точечные частицы . Хотя Стандартная модель чрезвычайно успешна, она ограничена микрокосмом из-за отсутствия гравитации и имеет некоторые параметры, произвольно добавленные, но необъяснимые.

Космическое изобилие элементарных частиц

Согласно нынешним моделям нуклеосинтеза Большого взрыва , первичный состав видимого вещества Вселенной должен состоять примерно на 75% из водорода и на 25% из гелия-4 (по массе). Нейтроны состоят из одного верхнего и двух нижних кварков, а протоны состоят из двух верхних и одного нижнего кварка. Поскольку другие обычные элементарные частицы (такие как электроны, нейтрино или слабые бозоны) настолько легки или настолько редки по сравнению с атомными ядрами, мы можем пренебречь их массовым вкладом в общую массу наблюдаемой Вселенной. Следовательно, можно сделать вывод, что большая часть видимой массы Вселенной состоит из протонов и нейтронов, которые, как и все барионы , в свою очередь, состоят из верхних и нижних кварков.

По некоторым оценкам, в наблюдаемой Вселенной примерно 10 80 барионов (почти полностью протонов и нейтронов).

Число протонов в наблюдаемой Вселенной называется числом Эддингтона .

Что касается количества частиц, по некоторым оценкам, почти вся материя, за исключением темной материи , находится в нейтрино, которые составляют большинство из примерно 10 86 элементарных частиц материи, существующих в видимой Вселенной. По другим оценкам, в видимой Вселенной существует примерно 10 97 элементарных частиц (не считая темной материи ), в основном фотоны и другие безмассовые носители силы.

Стандартная модель

Стандартная модель физики элементарных частиц содержит 12 разновидностей элементарных фермионов плюс соответствующие им античастицы , а также элементарные бозоны, которые являются посредниками сил, и бозон Хиггса , о котором 4 июля 2012 г. сообщалось, что он, вероятно, был обнаружен двумя основными эксперименты на Большом адронном коллайдере ( ATLAS и CMS ). Однако стандартная модель широко рассматриваются как временная теория , а не по - настоящему фундаментальным, так как не известно , если он совместит с Эйнштейном «s общей теорией относительности . Могут существовать гипотетические элементарные частицы, не описываемые Стандартной моделью, такие как гравитон , частица, несущая гравитационную силу , и частицы , суперсимметричные партнеры обычных частиц.

Фундаментальные фермионы

12 фундаментальных фермионов делятся на 3  поколения по 4 частицы в каждом. Половина фермионов - лептоны , три из которых имеют электрический заряд -1, называемый электроном (
е-
) мюон (
μ-
) и тау (
τ-
); остальные три лептона - нейтрино (
ν
е
,
ν
μ
,
ν
τ
), которые являются единственными элементарными фермионами, не имеющими ни электрического, ни цветного заряда. Остальные шесть частиц являются кварками (обсуждаются ниже).

Поколения

Поколения частиц
Лептоны
Первое поколение Второе поколение Третье поколение
Имя Условное обозначение Имя Условное обозначение Имя Условное обозначение
электрон
е-
мюон
μ-
тау
τ-
электронное нейтрино
ν
е
мюонное нейтрино
ν
μ
тау-нейтрино
ν
τ
Кварки
Первое поколение Второе поколение Третье поколение
вверх кварк
ты
очаровательный кварк c верхний кварк
т
вниз кварк
d
странный кварк
s
нижний кварк
б

Масса

В следующей таблице перечислены текущие измеренные массы и оценки масс для всех фермионов с использованием той же шкалы измерения: миллионы электрон-вольт относительно квадрата скорости света (МэВ / c 2 ). Например, наиболее точно известная масса кварка принадлежит топ-кварку (
т
) при 172,7  ГэВ / c 2 или 172 700  МэВ / c 2 , оцененных с использованием схемы On-shell .

Текущие значения масс элементарных фермионов
Символ частицы Имя частицы Значение массы Схема оценки массы кварка (точка)

ν
е
,
ν
μ
,
ν
τ
Нейтрино
(любого типа)
<2  эВ / c 2

е-
Электрон 0,511  МэВ / c 2

ты
Вверх кварк 1,9  МэВ / c 2 Схема MSbar ( μ MS = 2 ГэВ)

d
Вниз кварк 4,4  МэВ / c 2 Схема MSbar ( μ MS = 2 ГэВ)

s
Странный кварк 87 МэВ / c 2 Схема MSbar ( μ MS = 2 ГэВ)

μ-
Мюон
( Мю лептон )
105,7  МэВ / c 2

c
Очаровательный кварк 1320  МэВ / c 2 Схема MSbar ( μ MS = m c )

τ-
Тауон ( тау лептон ) 1780  МэВ / c 2

б
Нижний кварк 4 240  МэВ / c 2 Схема MSbar ( μ MS = m b )

т
Топ-кварк 172 700  МэВ / c 2 Схема на корпусе

Оценки значений масс кварков зависят от версии квантовой хромодинамики, используемой для описания кварковых взаимодействий. Кварки всегда заключены в оболочку из глюонов, которые придают значительно большую массу мезонам и барионам, в которых встречаются кварки, поэтому значения масс кварков не могут быть измерены напрямую. Поскольку их массы настолько малы по сравнению с эффективной массой окружающих глюонов, небольшие различия в расчетах приводят к большим различиям в массах.

Античастицы

Этим 12 частицам также соответствуют 12 фундаментальных фермионных античастиц. Например, антиэлектрон (позитрон)
е+
является античастицей электрона и имеет электрический заряд +1.

Поколения частиц
Антилептоны
Первое поколение Второе поколение Третье поколение
Имя Условное обозначение Имя Условное обозначение Имя Условное обозначение
позитрон
е+
антимюон
μ+
антитау
τ+
электронный антинейтрино
ν
е
мюонный антинейтрино
ν
μ
тау-антинейтрино
ν
τ
Антикварки
Первое поколение Второе поколение Третье поколение
вверх антикварк
ты
очарование антикварка
c
верхний антикварк
т
вниз антикварк
d
странный антикварк
s
нижний антикварк
б

Кварки

Изолированные кварки и антикварки никогда не были обнаружены, что объясняется конфайнментом . Каждый кварк несет один из трех цветовых зарядов в сильном взаимодействии ; антикварки также несут антицвет. Цветные заряженные частицы взаимодействуют посредством обмена глюонами так же, как заряженные частицы взаимодействуют посредством обмена фотонами . Однако глюоны сами заряжены по цвету, что приводит к усилению сильной силы по мере разделения заряженных по цвету частиц. В отличие от электромагнитной силы , которая уменьшается по мере разделения заряженных частиц, цветные заряженные частицы ощущают возрастающую силу.

Однако цветные заряженные частицы могут объединяться с образованием композитных частиц нейтрального цвета, называемых адронами . Кварк может образовывать пару с антикварком: кварк имеет цвет, а антикварк имеет соответствующий антицвет. Цвет и антицвет уравновешиваются, образуя нейтральный по цвету мезон . В качестве альтернативы, три кварка могут существовать вместе: один кварк является «красным», другой «синим», а третий - «зеленым». Эти три цветных кварка вместе образуют барион нейтрального цвета . Симметрично три антикварка с цветами «антикрасный», «антисиний» и «антизеленый» могут образовывать антибарион с нейтральным цветом .

Кварки также несут дробные электрические заряды , но, поскольку они заключены в адронах, все заряды которых являются целыми, дробные заряды никогда не выделялись. Следует отметить , что кварки имеют электрические заряды либо + 2 / 3 или - 1 / 3 , тогда как антикварки имеют соответствующие электрические заряды либо - 2 / 3 или + 1 / 3 .

Свидетельство существования кварков исходит от глубоко неупругого рассеяния : выстрела электронов по ядрам для определения распределения заряда внутри нуклонов (которые являются барионами). Если заряд однороден, электрическое поле вокруг протона должно быть однородным и электрон должен упруго рассеиваться. Электроны с низкой энергией рассеиваются таким образом, но при превышении определенной энергии протоны отклоняют некоторые электроны на большие углы. Отдающийся электрон имеет гораздо меньшую энергию и испускается струя частиц . Это неупругое рассеяние предполагает, что заряд протона не однороден, а разделен между более мелкими заряженными частицами: кварками.

Фундаментальные бозоны

В Стандартной модели векторные ( спин -1) бозоны ( глюоны , фотоны , а также W- и Z-бозоны ) передают силы, тогда как бозон Хиггса (спин-0) отвечает за внутреннюю массу частиц. Бозоны отличаются от фермионов тем, что несколько бозонов могут занимать одно и то же квантовое состояние ( принцип исключения Паули ). Также бозоны могут быть как элементарными, как фотоны, так и комбинациями, как мезоны . Спин бозонов - это целые числа, а не полуцелые.

Глюоны

Глюоны обеспечивают сильное взаимодействие , которое объединяет кварки и тем самым формирует адроны , которые являются либо барионами (три кварка), либо мезонами (один кварк и один антикварк). Протоны и нейтроны - это барионы, соединенные глюонами и образующие атомное ядро . Как и кварки, глюоны проявляют цвет и антицвет - не связанные с концепцией визуального цвета и, скорее, с сильными взаимодействиями частиц - иногда в комбинациях, всего восемь вариаций глюонов.

Электрослабые бозоны

Есть три слабых калибровочных бозона : W + , W - и Z 0 ; они опосредуют слабое взаимодействие . W-бозоны известны своим посредничеством в ядерном распаде: W - превращает нейтрон в протон, а затем распадается на электрон и пару электрон-антинейтрино. Z 0 не преобразует аромат или заряды частицы, а скорее изменяет импульс; это единственный механизм упругого рассеяния нейтрино. Слабые калибровочные бозоны были открыты из-за изменения импульса электронов в результате обмена нейтрино-Z. Безмассовый фотон опосредует электромагнитное взаимодействие . Эти четыре калибровочных бозона образуют электрослабое взаимодействие между элементарными частицами.

бозон Хиггса

Хотя слабые и электромагнитные силы кажутся нам совершенно разными при обычных энергиях, предполагается, что эти две силы объединяются в одну электрослабую силу при высоких энергиях. Это предсказание было четко подтверждено измерениями сечений рассеяния электрон-протонов высоких энергий на коллайдере HERA в DESY . Различия при низких энергиях являются следствием больших масс W- и Z-бозонов, которые, в свою очередь, являются следствием механизма Хиггса . В процессе спонтанного нарушения симметрии Хиггс выбирает особое направление в электрослабом пространстве, в результате чего три электрослабые частицы становятся очень тяжелыми (слабые бозоны), а одна остается с неопределенной массой покоя, поскольку она всегда находится в движении (фотон). . 4 июля 2012 года, после многих лет экспериментального поиска доказательств его существования, было объявлено , что бозон Хиггса наблюдался на Большом адронном коллайдере ЦЕРНа. На объявлении присутствовал Питер Хиггс, который первым заявил о существовании бозона Хиггса. Считается, что бозон Хиггса имеет массу около 125 ГэВ. Статистическая значимость этого открытия было сообщено как 5 сигма, что предполагает определенность примерно 99,99994%. В физике элементарных частиц это уровень значимости, необходимый для того, чтобы официально квалифицировать экспериментальные наблюдения как открытие . Исследования свойств недавно открытой частицы продолжаются.

Гравитон

Гравитон является гипотетической элементарной спином-2 частиц предложили опосредованную гравитацию. Хотя он остается неоткрытым из- за трудностей, связанных с его обнаружением , его иногда включают в таблицы элементарных частиц. Обычный гравитон безмассовый, хотя существуют модели, содержащие массивные гравитоны Калуцы – Клейна .

За пределами стандартной модели

Хотя экспериментальные данные в подавляющем большинстве подтверждают прогнозы, полученные на основе Стандартной модели , некоторые из ее параметров были добавлены произвольно, а не определены конкретным объяснением, которые остаются загадочными, например проблема иерархии . Теории, выходящие за рамки Стандартной модели, пытаются устранить эти недостатки.

Великое объединение

Одно расширение Стандартной модели пытается объединить электрослабое взаимодействие с сильным в единую «теорию великого объединения» (GUT). Такая сила будет спонтанно разделена на три силы механизмом, подобным Хиггсу . Теоретически этот пробой происходит при высоких энергиях, что затрудняет наблюдение объединения в лаборатории. Самым драматичным предсказанием великого объединения является существование бозонов X и Y , которые вызывают распад протона . Однако отсутствие наблюдения за распадом протона в нейтринной обсерватории Супер-Камиоканде исключает простейшие GUT, включая SU (5) и SO (10).

Суперсимметрия

Суперсимметрия расширяет Стандартную модель, добавляя к лагранжиану еще один класс симметрий . Эти симметрии обменивают фермионные частицы на бозонные . Такая симметрия предсказывает существование суперсимметричных частиц , сокращенно называемых sparticles , которые включают слептоны , скварки , нейтралино и чарджино . Каждая частица в стандартной модели будет иметь суперпартнер чей спин отличается от 1 / 2 от обычной частицы. Из-за нарушения суперсимметрии частицы намного тяжелее своих обычных аналогов; они настолько тяжелы, что существующие коллайдеры частиц не будут достаточно мощными, чтобы их произвести. Однако некоторые физики считают, что частицы будут обнаружены Большим адронным коллайдером в ЦЕРНе .

Струнная теория

Теория струн - это модель физики, согласно которой все «частицы», составляющие материю , состоят из струн (измеряемых на планковской длине), которые существуют в 11-мерном (согласно М-теории , ведущей версии) или 12-мерном ( согласно F-теории ) Вселенная. Эти струны колеблются на разных частотах, которые определяют массу, электрический заряд, цветовой заряд и вращение. «Струна» может быть открытой (линия) или замкнутой в петлю (одномерная сфера, например круг). Когда струна движется в пространстве, она сметает нечто, называемое мировым листом . Теория струн предсказывает от 1 до 10-бран (1- брана - это струна, а 10-брана - 10-мерный объект), которые предотвращают разрывы в «ткани» пространства, используя принцип неопределенности (например, электрон, вращающийся вокруг у атома водорода есть вероятность, хотя и малая, что он может быть где угодно во Вселенной в любой момент).

Теория струн предполагает, что наша Вселенная представляет собой всего лишь 4-брану, внутри которых существуют 3 пространственных измерения и 1 временное измерение, которые мы наблюдаем. Остальные 7 теоретических измерений либо очень крошечные и свернуты (и слишком малы, чтобы быть макроскопически доступными), либо просто не существуют / не могут существовать в нашей Вселенной (потому что они существуют в более грандиозной схеме, называемой « мультивселенная » за пределами нашей известной вселенной).

Некоторые предсказания теории струн включают существование чрезвычайно массивных аналогов обычных частиц из-за колебательных возбуждений фундаментальной струны и существование безмассовой частицы со спином 2, ведущей себя как гравитон .

Разноцветный

Теории Technicolor пытаются минимизировать стандартную модель, вводя новое взаимодействие, подобное КХД. Это означает, что добавляется новая теория так называемых техникварков, взаимодействующих через так называемые техниглюоны. Основная идея состоит в том, что бозон Хиггса - это не элементарная частица, а связанное состояние этих объектов.

Теория преонов

Согласно теории преонов, существует один или несколько порядков частиц более фундаментальных, чем те (или большинство из них), найденные в Стандартной модели. Наиболее фундаментальные из них обычно называются преонами, которые происходят от «докварков». По сути, теория преонов пытается сделать для Стандартной модели то, что Стандартная модель сделала для существовавшего до нее зоопарка частиц . Большинство моделей предполагают, что почти все в Стандартной модели можно объяснить с помощью трех-полудюжины дополнительных фундаментальных частиц и правил, управляющих их взаимодействиями. Интерес к преонам снизился с тех пор, как в 1980-х годах были экспериментально исключены простейшие модели.

Теория акселерона

Акселероны - это гипотетические субатомные частицы, которые интегрально связывают вновь обретенную массу нейтрино с темной энергией, которая, как предполагается, ускоряет расширение Вселенной .

В этой теории на нейтрино влияет новая сила, возникающая в результате их взаимодействия с акселеронами, приводящая к темной энергии. Темная энергия возникает, когда Вселенная пытается разделить нейтрино. Считается, что акселероны реже взаимодействуют с веществом, чем с нейтрино.

Смотрите также

Примечания

дальнейшее чтение

Обычные читатели

Учебники

  • Беттини, Алессандро (2008) Введение в физику элементарных частиц . Cambridge Univ. Нажмите. ISBN  978-0-521-88021-3
  • Кофлан, GD, JE Dodd и BM Gripaios (2006) Идеи физики элементарных частиц: Введение для ученых , 3-е изд. Cambridge Univ. Нажмите. Текст для бакалавриата для тех, кто не специализируется на физике.
  • Гриффитс, Дэвид Дж. (1987) Введение в элементарные частицы . Джон Вили и сыновья. ISBN  0-471-60386-4 .
  • Кейн, Гордон Л. (1987). Современная физика элементарных частиц . Книги Персея . ISBN 978-0-201-11749-3.
  • Перкинс, Дональд Х. (2000) Введение в физику высоких энергий , 4-е изд. Cambridge Univ. Нажмите.

внешние ссылки

Самый важный адрес, посвященный текущим экспериментальным и теоретическим знаниям о физике элементарных частиц, - это Группа данных о частицах , где различные международные организации собирают все экспериментальные данные и дают краткие обзоры современного теоретического понимания.

другие страницы: