Офорт (микротехнология) - Etching (microfabrication)

Емкости для травления, используемые для очистки Пираньями , плавиковой кислотой или RCA на партиях 4-дюймовых пластин на технологическом предприятии LAAS в Тулузе, Франция

Травление используется в микротехнологии для химического удаления слоев с поверхности пластины во время производства. Травление - критически важный технологический модуль, и каждая пластина проходит множество этапов травления, прежде чем будет завершена.

На многих этапах травления часть пластины защищена от травителя «маскирующим» материалом, который сопротивляется травлению. В некоторых случаях маскирующий материал представляет собой фоторезист, на который нанесен рисунок с помощью фотолитографии . В других случаях требуется более прочная маска, например из нитрида кремния .

Достоинства

Если травление предназначено для создания полости в материале, глубину полости можно приблизительно контролировать, используя время травления и известную скорость травления. Однако чаще травление должно полностью удалять верхний слой многослойной структуры без повреждения нижележащих или маскирующих слоев. Способность системы травления делать это зависит от соотношения скоростей травления в двух материалах ( селективности ).

Некоторые травления подрезают маскирующий слой и образуют полости с наклонными боковинами. Расстояние подреза называется смещением . Травители с большим смещением называют изотропными , потому что они разрушают субстрат одинаково во всех направлениях. Современные процессы в значительной степени отдают предпочтение анизотропному травлению, потому что они создают четкие, хорошо контролируемые детали.

Селективность Etch selectivity.png Синий: слой остается
  1. Плохо избирательное травление удаляет верхний слой, но также разрушает нижележащий материал.
  2. Высокоселективное травление не повреждает основной материал.
Изотропия Etch anisotropy.png Красный: маскирующий слой; желтый: слой, который нужно удалить
  1. Идеально изотропное травление позволяет получить круглые боковины.
  2. Идеально анизотропное травление создает вертикальные боковины.

Средства и технологии для травления

Двумя основными типами травителей являются жидкофазный («влажный») и плазменный («сухой»). Каждый из них существует в нескольких разновидностях.

Офорт, упрощенная анимация действия травителя на медном листе с маской

Мокрое травление

Радиационно-упрочненный кристалл микроконтроллера 1886VE10 перед травлением металлизации
Радиационно-упрочненный кристалл микроконтроллера 1886VE10 после использования процесса травления металлизации

В первых процессах травления использовались жидкофазные («мокрые») травители. Вафлю можно погрузить в ванну с травителем, которую необходимо перемешивать для достижения хорошего контроля процесса. Например, буферная фтористоводородная кислота (BHF) обычно используется для травления диоксида кремния на кремниевой подложке.

Для характеристики протравленной поверхности можно использовать различные специализированные травители.

Мокрые травители обычно изотропны, что приводит к большому смещению при травлении толстых пленок. Они также требуют удаления большого количества токсичных отходов. По этим причинам они редко используются в современных процессах. Однако проявитель, используемый для фоторезиста, напоминает мокрое травление.

В качестве альтернативы погружению в машинах для обработки отдельных пластин используется принцип Бернулли, в котором газ (обычно чистый азот ) используется для амортизации и защиты одной стороны пластины, в то время как травитель наносится на другую сторону. Это может быть как с лицевой, так и с обратной стороны. Химический состав травления распределяется на верхней стороне, когда находится в машине, и нижняя сторона не затрагивается. Этот метод травления особенно эффективен непосредственно перед «внутренней» обработкой ( BEOL ), когда пластины обычно намного тоньше после заточки пластин и очень чувствительны к термическому или механическому воздействию. Травление тонкого слоя даже в несколько микрометров удалит микротрещины, образовавшиеся во время заточки, в результате чего пластина будет иметь значительно повышенную прочность и гибкость без разрушения.

Анизотропное влажное травление (травление в зависимости от ориентации)

Анизотропное влажное травление на кремниевой пластине создает полость с трапецеидальным поперечным сечением. Дно полости представляет собой плоскость {100} (см. Индексы Миллера ), а стороны - плоскости {111}. Синий материал - это маска для травления, а зеленый - кремний.

Некоторые средства для влажного травления травят кристаллические материалы с очень разной скоростью в зависимости от того, какая грань кристалла обнажена. В монокристаллических материалах (например, кремниевых пластинах) этот эффект может допускать очень высокую анизотропию, как показано на рисунке. Термин «кристаллографическое травление» является синонимом «анизотропного травления по кристаллическим плоскостям».

Однако для некоторых некристаллических материалов, таких как стекло, существуют нетрадиционные способы анизотропного травления. Авторы используют многопоточный ламинарный поток, содержащий травящие нетравильные растворы, для изготовления стеклянной канавки. Раствор для травления в центре окружен непротравливающими растворами, а область, контактирующая с растворами для травления, ограничена окружающими непротравливающими растворами. При этом направление травления в основном вертикальное по отношению к поверхности стекла. СЭМ-изображения демонстрируют нарушение обычного теоретического предела соотношения сторон (ширина / высота = 0,5) и вносят вклад в двукратное улучшение (ширина / высота = 1).

Для кремния доступно несколько анизотропных влажных травителей, все они являются горячими водными каустиками. Например, гидроксид калия (КОН) демонстрирует селективность по скорости травления в 400 раз выше в направлениях кристаллов <100>, чем в направлениях <111>. EDP ​​( водный раствор этилендиамина и пирокатехола ), демонстрирует селективность <100> / <111> 17X, не травит диоксид кремния, как KOH, а также демонстрирует высокую селективность между слаболегированными и сильно легированными бором (p- тип) кремний. Использование этих травителей на пластинах, которые уже содержат интегральные схемы CMOS, требует защиты схемы. КОН может вводить подвижные ионы калия в диоксид кремния , а ЭДП является очень коррозионным и канцерогенным , поэтому при их использовании требуется осторожность. Гидроксид тетраметиламмония (TMAH) представляет собой более безопасную альтернативу, чем EDP, с селективностью 37X между плоскостями {100} и {111} в кремнии.

Травление поверхности кремния (100) через прямоугольное отверстие в маскирующем материале, например отверстие в слое нитрида кремния, создает углубление с плоскими наклонными боковыми стенками с ориентацией {111} и плоским дном с ориентацией (100). Боковые стенки, ориентированные {111}, имеют угол к поверхности пластины:

Если травление продолжается «до конца», то есть до исчезновения плоского дна, ямка становится желобом с V-образным поперечным сечением. Если исходный прямоугольник был идеальным квадратом, углубление после вытравливания будет иметь пирамидальную форму.

Поднутрение δ под краем маскирующего материала определяется как:

,

где R xxx - скорость травления в направлении <xxx>, T - время травления, D - глубина травления, S - анизотропия материала и травителя.

У разных травителей разная анизотропия. Ниже представлена ​​таблица распространенных анизотропных травителей для кремния:

Травление Рабочая температура (° C) R 100 (мкм / мин) S = 100 рэнд / 111 рэнд Маски материалы
Этилендиаминпирокатехол
(EDP)
110 0,47 17 SiO 2 , Si 3 N 4 , Au , Cr , Ag , Cu
Гидроксид калия / изопропиловый спирт
(КОН / IPA)
50 1.0 400 Si 3 N 4 , SiO 2 (травление при 2,8 нм / мин)
Гидроксид тетраметиламмония
(TMAH)
80 0,6 37 Si 3 N 4 , SiO 2

Плазменное травление

Упрощенная иллюстрация сухого травления с использованием позитивного фоторезиста во время процесса фотолитографии при микротехнологии полупроводников. Примечание: не в масштабе.

Современные процессы СБИС избегают влажного травления и вместо этого используют плазменное травление . Плазменные травители могут работать в нескольких режимах, регулируя параметры плазмы. Обычное плазменное травление работает от 0,1 до 5 Торр . (Эта единица давления, обычно используемая в вакуумной технике, равна примерно 133,3 Паскаля .) Плазма производит энергичные свободные радикалы , нейтрально заряженные , которые реагируют на поверхности пластины. Поскольку нейтральные частицы атакуют пластину со всех сторон, этот процесс изотропен.

Плазменное травление может быть изотропным, т. Е. Показывать скорость бокового выреза на поверхности с рисунком, приблизительно такую ​​же, как его скорость травления вниз, или может быть анизотропным, то есть показывать меньшую скорость бокового выреза, чем скорость травления вниз. Такая анизотропия максимальна при глубоком реактивном ионном травлении . Использование термина анизотропия для плазменного травления не следует путать с использованием того же термина, когда речь идет о травлении, зависимом от ориентации.

Исходный газ для плазмы обычно содержит небольшие молекулы, богатые хлором или фтором . Так , например, четыреххлористый углерод (CCl 4 ) гравирует кремний и алюминий , и трифторметансульфонат гравирует диоксид кремния и нитрида кремния . Плазма, содержащая кислород , используется для окислениязолы ») фоторезиста и облегчения его удаления.

Ионное измельчение или травление распылением использует более низкое давление, часто всего 10 -4 Торр (10 мПа). Он бомбардирует пластину энергичными ионами благородных газов , часто Ar + , которые выбивают атомы из подложки, передавая импульс . Поскольку травление осуществляется ионами, которые приближаются к пластине примерно с одного направления, этот процесс сильно анизотропен. С другой стороны, он имеет тенденцию к плохой селективности. Реактивное ионное травление (RIE) работает в условиях, промежуточных между травлением распылением и плазменным травлением (от 10 -3 до 10 -1 Торр). Глубокое реактивно-ионное травление (DRIE) изменяет технику RIE для создания глубоких узких деталей.

Общие процессы травления, используемые в микротехнологии

Травители для обычных материалов микротехнологии
Материал для травления Влажные травители Плазменные травители
Алюминий (Al) 80% фосфорная кислота (H 3 PO 4 ) + 5% уксусная кислота
+ 5% азотная кислота (HNO 3 ) + 10% воды (H 2 O) при 35–45 ° C
Cl 2 , CCl 4 , SiCl 4 , BCl 3
Оксид индия и олова [ITO] (In 2 O 3 : SnO 2 ) Соляная кислота (HCl) + азотная кислота (HNO 3 ) + вода (H 2 O) (1: 0,1: 1) при 40 ° C
Хром (Cr)

Арсенид галлия (GaAs)

Золото (Au)
Молибден (Мо) CF 4
Органические остатки и фоторезист Травление Пираньи : серная кислота (H 2 SO 4 ) + перекись водорода (H 2 O 2 ) O 2 ( озоление )
Платина (Pt) Царская водка
Кремний (Si)
Диоксид кремния (SiO 2 ) CF 4 , SF 6 , NF 3
Нитрид кремния (Si 3 N 4 )
  • 85% фосфорная кислота (H 3 PO 4 ) при 180 ° C (требуется маска для травления SiO 2 )
CF 4 , SF 6 , NF 3 , CHF 3
Тантал (Ta) CF 4
Титан (Ti) Плавиковая кислота (HF) BCl 3
Нитрид титана (TiN)
  • Азотная кислота (HNO 3 ) + плавиковая кислота (HF)
  • SC1
  • Буферизованный HF (bHF)
Вольфрам (Вт)
  • Азотная кислота (HNO 3 ) + плавиковая кислота (HF)
  • Перекись водорода (H 2 O 2 )

Смотрите также

Ссылки

  • Джегер, Ричард С. (2002). «Литография». Введение в производство микроэлектроники (2-е изд.). Река Верхнее Седл: Prentice Hall. ISBN 978-0-201-44494-0.
  • Там же, "Процессы для микроэлектромеханических систем (МЭМС)"

Встроенные ссылки

внешние ссылки