Гравитоэлектромагнетизм - Gravitoelectromagnetism

Схема подтверждения гравитомагнетизма гравитационным зондом B

Гравитоэлектромагнетизм , сокращенно GEM , относится к набору формальных аналогий между уравнениями электромагнетизма и релятивистской гравитации ; в частности: между уравнениями поля Максвелла и приближением, допустимым при определенных условиях, к уравнениям поля Эйнштейна для общей теории относительности . Гравитомагнетизм - широко используемый термин, относящийся конкретно к кинетическим эффектам гравитации по аналогии с магнитными эффектами движущегося электрического заряда. Самая распространенная версия GEM действительна только вдали от изолированных источников и для медленно движущихсятестовые частицы .

Аналогия и уравнения, отличающиеся лишь некоторыми небольшими факторами, были впервые опубликованы в 1893 году, до общей теории относительности, Оливером Хевисайдом как отдельная теория, расширяющая закон Ньютона.

Задний план

Эта приблизительная переформулировка гравитации, описанная общей теорией относительности в пределе слабого поля, заставляет видимое поле появляться в системе отсчета, отличной от системы отсчета свободно движущегося инерционного тела. Это кажущееся поле можно описать двумя компонентами, которые действуют соответственно как электрическое и магнитное поля электромагнетизма, и по аналогии они называются гравитоэлектрическим и гравитомагнитным полями, поскольку они возникают вокруг массы таким же образом, как и движущийся электрический заряд. источник электрического и магнитного полей. Основным следствием действия гравитомагнитного поля или ускорения, зависящего от скорости, является то, что движущийся объект рядом с массивным вращающимся объектом будет испытывать ускорение, не предсказываемое чисто ньютоновским (гравитоэлектрическим) полем тяжести. Более тонкие предсказания, такие как индуцированное вращение падающего объекта и прецессия вращающегося объекта, являются одними из последних основных предсказаний общей теории относительности, подлежащих непосредственной проверке.

Косвенные подтверждения гравитомагнитных эффектов были получены из анализа релятивистских джетов . Роджер Пенроуз предложил механизм, основанный на эффектах перетаскивания кадра для извлечения энергии и импульса из вращающихся черных дыр . Рева Кей Уильямс из Университета Флориды разработала строгое доказательство, подтверждающее механизм Пенроуза . Ее модель показала, как эффект Лензе – Тирринга может объяснить наблюдаемые высокие энергии и светимости квазаров и активных ядер галактик ; коллимированные струи вокруг своей полярной оси; и несимметричные струи (относительно плоскости орбиты). Все эти наблюдаемые свойства можно объяснить с помощью гравитомагнитных эффектов. Применение Уильямсом механизма Пенроуза можно применить к черным дырам любого размера. Релятивистские струи могут служить самой большой и яркой формой подтверждения гравитомагнетизма.

Группа из Стэнфордского университета в настоящее время анализирует данные первого прямого испытания GEM, спутникового эксперимента Gravity Probe B , чтобы выяснить, согласуются ли они с гравитомагнетизмом. Операция по лазерной локации обсерватории Апач-Пойнт также планирует наблюдать эффекты гравитомагнетизма.

Уравнения

Согласно общей теории относительности , гравитационное поле, создаваемое вращающимся объектом (или любой вращающейся массой-энергией), в частном предельном случае может быть описано уравнениями, имеющими ту же форму, что и в классическом электромагнетизме . Исходя из основного уравнения общей теории относительности, уравнения поля Эйнштейна и допуская слабое гравитационное поле или достаточно плоское пространство- время , можно вывести гравитационные аналоги уравнений Максвелла для электромагнетизма , называемые «уравнениями GEM». Уравнения GEM по сравнению с уравнениями Максвелла:

Уравнения GEM Уравнения Максвелла

где:

Сила Лоренца

Для пробной частицы, масса m которой «мала», в стационарной системе результирующая сила (Лоренца), действующая на нее из-за поля GEM, описывается следующим GEM-аналогом уравнения силы Лоренца :

Уравнение GEM Уравнение ЭМ

где:

Вектор Пойнтинга

Вектор Пойнтинга GEM по сравнению с электромагнитным вектором Пойнтинга определяется как:

Уравнение GEM Уравнение ЭМ

Масштабирование полей

В литературе нет согласованного масштабирования для гравитоэлектрического и гравитомагнитного полей, что затрудняет сравнение. Например, чтобы получить согласие с работами Машхуна, все экземпляры B g в уравнениях GEM должны быть умножены на -1/2cи E g на −1. Эти факторы по-разному модифицируют аналоги уравнений для силы Лоренца. Не существует выбора масштабирования, который позволял бы всем уравнениям GEM и EM быть полностью аналогичными. Расхождение в множителях возникает из-за того, что источником гравитационного поля является тензор энергии-импульса второго порядка , в отличие от источника электромагнитного поля, являющегося четырехтоковым тензором первого порядка . Это различие становится более ясным, если сравнить неинвариантность релятивистской массы с инвариантностью электрического заряда . Это можно проследить до характера гравитационного поля со спином 2, в отличие от электромагнетизма, представляющего собой поле со спином 1. (См. Релятивистские волновые уравнения для получения дополнительной информации о полях "спин-1" и "спин-2").

Эффекты высшего порядка

Некоторые гравитомагнитные эффекты более высокого порядка могут воспроизводить эффекты, напоминающие взаимодействия более обычных поляризованных зарядов. Например, если два колеса вращаются вокруг общей оси, взаимное гравитационное притяжение между двумя колесами будет больше, если они вращаются в противоположных направлениях, чем в одном направлении. Это может быть выражено как притягивающая или отталкивающая гравитомагнитная составляющая.

Гравитомагнитные аргументы также предсказывают, что гибкая или текучая тороидальная масса, испытывающая вращательное ускорение малой оси (ускоряющее вращение « дымового кольца »), будет иметь тенденцию тянуть материю через горло (случай перетаскивания вращающейся рамки, действующего через горло). Теоретически эту конфигурацию можно использовать для ускорения объектов (через глотку) без воздействия на такие объекты каких - либо перегрузок .

Рассмотрим тороидальную массу с двумя степенями вращения (вращение главной и малой оси, обе вывернутые наизнанку и вращаются). Это представляет собой «особый случай», в котором гравитомагнитные эффекты создают вокруг объекта киральное гравитационное поле, подобное штопору. Обычно ожидается, что силы реакции на торможение на внутреннем и внешнем экваторах будут равными и противоположными по величине и направлению соответственно в более простом случае, включающем вращение только по малой оси. Когда оба вращения применяются одновременно, можно сказать, что эти два набора сил реакции возникают на разных глубинах в радиальном поле Кориолиса, которое распространяется поперек вращающегося тора, что затрудняет установление того, что подавление завершено.

Смоделировать это сложное поведение как задачу искривленного пространства-времени еще предстоит, и это считается очень сложной задачей.

Гравитомагнитные поля астрономических объектов

Формула для гравитомагнитного поля B g вблизи вращающегося тела может быть получена из уравнений GEM. Это ровно половина скорости прецессии Лензе-Тирринга и определяется выражением:

где L - момент количества движения тела. В экваториальной плоскости r и L перпендикулярны, поэтому их скалярное произведение обращается в нуль, и эта формула сводится к следующему:

Величина момента количества движения однородного тела шарообразной формы равна:

где:

Гравитационные волны имеют равные гравитомагнитную и гравитоэлектрическую составляющие.

земля

Следовательно, величина гравитомагнитного поля Земли на ее экваторе равна:

где находится сила тяжести Земли . Направление поля совпадает с направлением углового момента, т. Е. На север.

Из этого расчета следует, что экваториальное гравитомагнитное поле Земли составляет около 1,012 × 10 −14  Гц , или3,1 × 10 -7  г / с . Такое поле очень слабое и требует очень чувствительных измерений. Одним из экспериментов по измерению такого поля была миссия Gravity Probe B.

Пульсар

Если предыдущая формула используется с пульсаром PSR J1748-2446ad (который вращается 716 раз в секунду), принимая радиус 16 км и две массы Солнца, то

равняется примерно 166 Гц. Это было бы легко заметить. Однако пульсар вращается на экваторе со скоростью, составляющей четверть скорости света, а его радиус всего в три раза больше, чем его радиус Шварцшильда . Когда в системе существует такое быстрое движение и такие сильные гравитационные поля, упрощенный подход разделения гравитомагнитных и гравитоэлектрических сил может применяться только в качестве очень грубого приближения.

Отсутствие инвариантности

В то время как уравнения Максвелла инвариантны относительно преобразований Лоренца , уравнения GEM - нет. В основе этого различия лежит тот факт, что ρ g и j g не образуют четырехвектора (а являются просто частью тензора энергии-импульса ).

Хотя GEM может иметь место приблизительно в двух различных системах отсчета, связанных бустом Лоренца , нет способа вычислить переменные GEM одного такого кадра из переменных GEM другого, в отличие от ситуации с переменными электромагнетизма. В самом деле, их прогнозы (о том, какое движение является свободным падением), вероятно, будут противоречить друг другу.

Обратите внимание, что уравнения GEM инвариантны относительно сдвигов и пространственных вращений, но не при повышениях и более общих криволинейных преобразованиях. Уравнения Максвелла можно сформулировать так, чтобы они были инвариантными относительно всех этих преобразований координат.

Смотрите также

Рекомендации

дальнейшее чтение

Книги

  • М. П. Хобсон; GP Efstathiou; А. Н. Ласенби (2006). Общая теория относительности: введение для физиков . Издательство Кембриджского университета. С. 490–491. ISBN 9780521829519.
  • Л. Х. Райдер (2009). Введение в общую теорию относительности . Издательство Кембриджского университета. С. 200–207. ISBN 9780521845632.
  • Дж. Б. Хартл (2002). Гравитация: Введение в общую теорию относительности Эйнштейна . Эддисон-Уэсли. стр. 296, 303. ISBN 9780805386622.
  • С. Кэрролл (2003). Пространство-время и геометрия: введение в общую теорию относительности . Эддисон-Уэсли. п. 281. ISBN. 9780805387322.
  • Дж. А. Уиллер (1990). «Следующий приз гравитации: гравитомагнетизм». Путешествие в гравитацию и пространство-время . Научная американская библиотека. С. 232–233. ISBN 978-0-7167-5016-1.
  • Л. Иорио (ред.) (2007). Измерение гравитомагнетизма: сложное предприятие . Новая звезда. ISBN 978-1-60021-002-0.CS1 maint: дополнительный текст: список авторов ( ссылка )
  • О.Д. Ефименко (1992). Причинность, электромагнитная индукция и гравитация: другой подход к теории электромагнитных и гравитационных полей . Электретный научный. ISBN 978-0-917406-09-6.
  • О.Д. Ефименко (2006). Гравитация и когравитация . Электретный научный. ISBN 978-0-917406-15-7.
  • Антуан Акке (2018). Гравитация объясняется гравитоэлектромагнетизмом . КОЛЕНИ. ISBN 978-613-9-93065-4.

Статьи

Внешние ссылки